Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38184724

RESUMEN

BACKGROUND: Humans are likely exposed to microplastics (MPs) in a variety of places including indoor and outdoor air. Research to better understand how exposure to MPs correlates to health is growing. To fully understand the possible impacts of MPs on human health, it is necessary to quantify MP exposure and identify what critical data gaps exist. OBJECTIVES: The current paper provides a human exposure assessment of microplastics in the air using systematically reviewed literature that provided concentration of MPs in air as well as doses used in toxicology studies to calculate inhalation exposure dose. METHODS: All published peer-reviewed journal articles, non-published papers, and grey literature that focused on micro- or nano-plastics in indoor and outdoor air were systematically searched using PRISMA guidelines. Literature that defined specific concentrations and size of MPs in air or exposed to human lung cells, animals, or humans with measurable health impacts were included in data extraction. Inhalational exposures were calculated for different age groups using published MP concentrations from the included literature using exposure dose equations and values from U.S. ATSDR and EPA. RESULTS: Calculated mean indoor inhalational exposures from passive sampling methods were higher than those calculated from active sampling methods. When comparing indoor and outdoor sampling, calculated inhalation exposures from indoor samples were greater than those from outdoor samples. Inhalation exposures of MPs differed between age groups with infants having the highest calculated dose values for all locations followed by preschool age children, middle-school aged children, pregnant women, adolescents, and non-pregnant adults. MP doses used in toxicology studies produced higher calculated mean inhalational exposures than those from environmental samples. IMPACT: This study is the first known systematic review of inhalational MP exposure from indoor and outdoor air. It also provides inhalational exposures calculated from previously published environmental samples of MPs as well as from toxicology studies.

2.
Am J Ind Med ; 66(12): 1033-1047, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742097

RESUMEN

BACKGROUND: Plastic debris pervades our environment. Some breaks down into microplastics (MPs) that can enter and distribute in living organisms causing effects in multiple target organs. MPs have been demonstrated to harm animals through environmental exposure. Laboratory animal studies are still insufficient to evaluate human impact. And while MPs have been found in human tissues, the health effects at environmental exposure levels are unclear. AIM: We reviewed and summarized existing evidence on health effects from occupational exposure to MPs. Additionally, the diverse effects documented for workers were organized by MP type and associated co-contaminants. Evidence of the unique effects of polyvinyl chloride (PVC) on liver was then highlighted. METHODS: We conducted two stepwise online literature reviews of publications focused on the health risks associated with occupational MP exposures. This information was supplemented with findings from animal studies. RESULTS: Our analysis focused on 34 published studies on occupational health effects from MP exposure with half involving exposure to PVC and the other half a variety of other MPs to compare. Liver effects following PVC exposure were reported for workers. While PVC exposure causes liver toxicity and increases the risk of liver cancers, including angiosarcomas and hepatocellular carcinomas, the carcinogenic effects of work-related exposure to other MPs, such as polystyrene and polyethylene, are not well understood. CONCLUSION: The data supporting liver toxicity are strongest for PVC exposure. Overall, the evidence of liver toxicity from occupational exposure to MPs other than PVC is lacking. The PVC worker data summarized here can be useful in assisting clinicians evaluating exposure histories from PVC exposure and designing future cell, animal, and population exposure-effect research studies.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Cloruro de Polivinilo/toxicidad , Exposición a Riesgos Ambientales , Hígado , Contaminantes Químicos del Agua/toxicidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-35162780

RESUMEN

Natural and anthropogenic disasters are associated with air quality concerns due to the potential redistribution of pollutants in the environment. Our objective was to conduct a spatiotemporal analysis of air concentrations of benzene, toluene, ethylbenzne, and xylene (BTEX) and criteria air pollutants in North Carolina during and after Hurricane Florence. Three sampling campaigns were carried out immediately after the storm (September 2018) and at four-month intervals. BTEX were measured along major roads. Concurrent criteria air pollutant concentrations were predicted from modeling. Correlation between air pollutants and possible point sources was conducted using spatial regression. Exceedances of ambient air criteria were observed for benzene (in all sampling periods) and PM2.5 (mostly immediately after Florence). For both, there was an association between higher concentrations and fueling stations, particularly immediately after Florence. For other pollutants, concentrations were generally below levels of regulatory concern. Through characterization of air quality under both disaster and "normal" conditions, this study demonstrates spatial and temporal variation in air pollutants. We found that only benzene and PM2.5 were present at levels of potential concern, and there were localized increases immediately after the hurricane. These substances warrant particular attention in future disaster response research (DR2) investigations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Tormentas Ciclónicas , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , North Carolina , Emisiones de Vehículos/análisis
4.
J Environ Sci (China) ; 115: 350-362, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969462

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of concern because of their ubiquitous presence in surface and ground water; analytical methods that can be used for rapid comprehensive exposure assessment and fingerprinting of PFAS are needed. Following the fires at the Intercontinental Terminals Company (ITC) in Deer Park, TX in 2019, large quantities of PFAS-containing firefighting foams were deployed. The release of these substances into the Houston Ship Channel/Galveston Bay (HSC/GB) prompted concerns over the extent and level of PFAS contamination. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based study of temporal and spatial patterns of PFAS associated with this incident revealed presence of 7 species; their levels gradually decreased over a 6-month period. Because the targeted LC-MS/MS analysis was focused on about 30 PFAS molecules, it may have missed other PFAS compounds present in firefighting foams. Therefore, we utilized untargeted LC-ion mobility spectrometry-mass spectrometry (LC-IMS-MS)-based analytical approach for a more comprehensive characterization of PFAS in these water samples. We analyzed 31 samples from 9 sites in the HSC/GB that were collected over 5 months after the incident. Our data showed that additional 19 PFAS were detected in surface water of HSC/GB, most of them decreased gradually after the incident. PFAS features detected by LC-MS/MS correlated well in abundance with LC-IMS-MS data; however, LC-IMS-MS identified a number of additional PFAS, many known to be components of firefighting foams. These findings therefore illustrate that untargeted LC-IMS-MS improved our understanding of PFAS presence in complex environmental samples.


Asunto(s)
Ciervos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Bahías , Cromatografía Liquida , Fluorocarburos/análisis , Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
5.
J Environ Health ; 84(10): 36-40, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37204985
6.
Environ Justice ; 14(4): 277-287, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34484557

RESUMEN

Unprecedented inland precipitation and catastrophic flooding associated with Hurricane Harvey potentially redistributed contaminants from industrial sites and transportation infrastructure to recreational areas that make up networks of green infrastructure, creeks, and waterways used for flood control throughout the Greater Houston Area. Sediment samples were collected in parks located near the Buffalo Bayou watershed 1 week after Hurricane Harvey made landfall and again 7 weeks later. Total concentrations of the U.S. Environmental Protection Agency's (EPA's) 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in each sample at both time points. Diagnostic ratios were calculated to improve understanding of potential sources of PAHs after flooding. Diagnostic ratios suggest vehicular traffic to be a potential source for PAHs in parks. Although the concentrations of PAHs in all samples were below EPA actionable levels, given that no background values were available for comparison, it is difficult to quantify the impact flooding from Hurricane Harvey had on PAH concentrations in Houston parks. However, given the high frequency of flooding in Houston, and the concentration of industrial facilities and transportation infrastructure adjacent to recreation areas, these data demonstrate that PAHs were still present after unprecedented flooding. This study may also serve as a baseline for future efforts to understand the environmental health impacts of disasters.

7.
J Health Pollut ; 11(29): 210308, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33815906

RESUMEN

BACKGROUND: Hurricane Harvey made landfall along the Texas Gulf Coast as a Category 4 hurricane on August 25, 2017, producing unprecedented precipitation that devastated coastal areas. Catastrophic flooding in the City of Houston inundated industrial and residential properties resulting in the displacement and transfer of soil, sediment, and debris and heightening existing environmental justice (EJ) concerns. OBJECTIVES: The primary aim of this study was to evaluate the presence, distribution, and potential human health implications of polycyclic aromatic hydrocarbons (PAHs) in a residential neighborhood of Houston, Texas following a major hurricane. METHODS: Concentrations of PAHs in 40 soil samples collected from a residential neighborhood in Houston, Texas were measured. Spatial interpolation was applied to determine the distribution of PAHs. Potential human health risks were evaluated by calculating toxicity equivalency quotients (TEQs) and incremental excess lifetime cancer risk (IELCR). RESULTS: Total priority PAH concentrations varied across samples (range: 9.7 × 101 ng/g-1.6 × 104 ng/g; mean: 3.0 × 103 ng/g ± 3.6 × 103 standard deviation). Spatial analysis indicated a variable distribution of PAH constituents and concentrations. The IELCR analysis indicated that nine of the 40 samples were above minimum standards. CONCLUSIONS: Findings from this study highlight the need for fine scale soil testing in residential areas as well as the importance of site-specific risk assessment. COMPETING INTERESTS: The authors declare no competing financial interests.

8.
J Expo Sci Environ Epidemiol ; 31(5): 810-822, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33895777

RESUMEN

BACKGROUND: Hurricane Florence made landfall in North Carolina in September 2018 causing extensive flooding. Several potential point sources of hazardous substances and Superfund sites sustained water damage and contaminants may have been released into the environment. OBJECTIVE: This study conducted temporal analysis of contaminant distribution and potential human health risks from Hurricane Florence-associated flooding. METHODS: Soil samples were collected from 12 sites across four counties in North Carolina in September 2018, January and May 2019. Chemical analyses were performed for organics by gas chromatography-mass spectrometry. Metals were analyzed using inductively coupled plasma mass spectrometry. Hazard index and cancer risk were calculated using EPA Regional Screening Level Soil Screening Levels for residential soils. RESULTS: PAH and metals detected downstream from the coal ash storage pond that leaked were detected and were indicative of a pyrogenic source of contamination. PAH at these sites were of human health concern because cancer risk values exceeded 1 × 10-6 threshold. Other contaminants measured across sampling sites, or corresponding hazard index and cancer risk, did not exhibit spatial or temporal differences or were of concern. SIGNIFICANCE: This work shows the importance of rapid exposure assessment following natural disasters. It also establishes baseline levels of contaminants for future comparisons.


Asunto(s)
Tormentas Ciclónicas , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metales , North Carolina/epidemiología , Suelo
9.
Environ Pollut ; 265(Pt B): 115009, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32574947

RESUMEN

Firefighting foams contain per- and polyfluoroalkyl substances (PFAS) - a class of compounds widely used as surfactants. PFAS are persistent organic pollutants that have been reported in waterways and drinking water systems across the United States. These substances are of interest to both regulatory agencies and the general public because of their persistence in the environment and association with adverse health effects. PFAS can be released in large quantities during industrial incidents because they are present in most firefighting foams used to suppress chemical fires; however, little is known about persistence of PFAS in public waterways after such events. In response to large-scale fires at Intercontinental Terminal Company (ITC) in Houston, Texas in March 2019, almost 5 million liters of class B firefighting foams were used. Much of this material flowed into the Houston Ship Channel and Galveston Bay (HSC/GB) and concerns were raised about the levels of PFAS in these water bodies that have commercial and recreational uses. To evaluate the impact of the ITC incident response on PFAS levels in HSC/GB, we collected 52 surface water samples from 12 locations over a 6-month period after the incident. Samples were analyzed using liquid chromatography-mass spectrometry to evaluate 27 PFAS, including perfluorocarboxylic acids, perfluorosulfonates and fluorotelomers. Among PFAS that were evaluated, 6:2 FTS and PFOS were detected at highest concentrations. Temporal and spatial profiles of PFAS were established; we found a major peak in the level of many PFAS in the days and weeks after the incident and a gradual decline over several months with patterns consistent with the tide- and wave-associated water movements. This work documents the impact of a large-scale industrial fire, on the environmental levels of PFAS, establishes a baseline concentration of PFAS in HSC/GB, and highlights the critical need for development of PFAS water quality standards.


Asunto(s)
Agua Potable/análisis , Incendios , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Texas
10.
Artículo en Inglés | MEDLINE | ID: mdl-31940904

RESUMEN

Communities adjacent to concentrated areas of industrial land use (CAILU) are exposed to elevated levels of pollutants during flood disasters. Many CAILU are also characterized by insufficient infrastructure, poor environmental quality, and socially vulnerable populations. Manchester, TX is a marginalized CAILU neighborhood proximate to several petrochemical industrial sites that is prone to frequent flooding. Pollutants from stormwater runoff discharge from industrial land uses into residential areas have created increased toxicant exposures. Working with local organizations, centers/institutes, stakeholders, and residents, public health researchers sampled air, water, indoor dust, and outdoor soil while researchers from landscape architecture and urban planning applied these findings to develop a community-scaled master plan. The plan utilizes land use and built environment changes to increase flood resiliency and decrease exposure to contaminants. Using a combination of models to assess the performance, costs, and benefits of green infrastructure and pollutant load impacts, the master plan is projected to capture 147,456 cubic feet of runoff, and create $331,400 of annual green benefits by reducing air pollution and energy use, providing pollution treatment, increase carbon dioxide sequestration, and improve groundwater replenishment. Simultaneously, there is a 41% decrease across all analyzed pollutants, reducing exposure to and transferal of toxic materials.


Asunto(s)
Ciencia Ciudadana/organización & administración , Planificación de Ciudades/organización & administración , Monitoreo del Ambiente/métodos , Contaminación Ambiental/prevención & control , Inundaciones/prevención & control , Entorno Construido , Sustancias Peligrosas , Humanos
11.
Environ Manage ; 64(4): 381-390, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31515572

RESUMEN

Hurricane Harvey made landfall on the Texas Gulf Coast in August 2017 causing catastrophic flooding. Harris County is highly vulnerable to flooding, which is controlled in part by a system of bayous that include parks and trails. The petrochemical industry, as well as thousands of documented sources of environmental pollution make recreational areas susceptible to environmental contamination during flood events. Recreational areas and toxic exposure sources were geocoded by subwatershed boundaries and overlaid with the area of Hurricane Harvey inundation. A total of 121 of 349 (36.78%) parks were flooded; 102 of 121 (84.30%) were located in subwatersheds with at least one exposure source. A total of 337 exposure sources (6 Superfund, 32 municipal solid waste, and 299 petroleum storage tanks) in 30 subwatersheds were flooded. Though parks provide flood mitigation and other postdisaster benefits, their susceptibility to environmental contamination should be considered, especially in areas with a large number of toxic exposure sources.


Asunto(s)
Tormentas Ciclónicas , Exposición a Riesgos Ambientales , Inundaciones , Análisis Espacial , Texas
12.
Environ Justice ; 12(4): 194-203, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292537

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants associated with adverse human health outcomes. Environmental justice neighborhoods experience disproportionate environmental health risks. Hurricane Harvey made landfall on August 25, 2017, bringing record rainfall and catastrophic flooding to Houston, Texas, redistributing PAHs in residential soil. We aimed to describe PAH distributions in soil in the Manchester neighborhood of Houston, TX, and identify their potential sources. Soil samples were collected from 24 residential addresses and analyzed for 16 priority PAH concentrations using an accelerated solvent extractor. PAH distribution and source determination were conducted using spatial analysis and isomer ratios. All sample sites detected PAHs in soil, with the total mass ranging from 0.75 to 69.9 ng/g, which were predominantly four-ring structured PAHs. Total PAH concentrations were highest on the northeastern border of the neighborhood, whereas lower overall concentrations of PAHs were found on the southwestern border, at the highest elevation in the watershed. The ratio indeno[1,,3-cd]pyrene (IP) to indeno[1,,3-cd]pyrene plus benzo[ghi]perylene indicated vehicular combustion as the primary source in 19 of 23 samples. After heavy rainfall from Hurricane Harvey in the Manchester neighborhood, PAHs in soil were unevenly distributed throughout the neighborhood, with an accumulation of PAHs in the northeastern edges. Using isomer ratios and spatial analysis, the likely source of PAHs is from use of transportation infrastructure.

13.
PLoS One ; 13(2): e0192660, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420658

RESUMEN

INTRODUCTION: Polycyclic aromatic hydrocarbons (PAHs) are complex environmental toxicants. Exposure to them has been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Based on an ongoing community engagement partnership with stakeholder groups and residents, we conducted a small longitudinal study to assess domestic exposure to PAHs among residents of Manchester, an environmental justice neighborhood located in the East End of Houston, TX. METHODS: In December, 2016, we used fiber wipes to collect samples of household dust from 25 homes in Manchester. Following Hurricane Harvey, in September 2017, we revisited 24 of the 25 homes to collect soil samples from the front yards of the same homes. Wipes and soil were analyzed for the presence of PAHs using gas chromatography-mass spectrometry (GC-MS) methods. Principal component analysis plots, heatmaps, and PAH ratios were used to compare pre- and post-Hurricane Harvey samples. RESULTS: While direct comparison is not possible, we present three methods for comparing PAHs found in pre-hurricane fiber wipes and post-hurricane soil samples. The methods demonstrate that the PAHs found before and after Hurricane Harvey are likely from similar sources and that those sources are most likely to be associated with combustion. We also found evidence of redistribution of PAHs due to extreme flooding associated with Hurricane Harvey. DISCUSSION: Residents of the Manchester neighborhood of Houston, TX, are exposed to a range of PAHs in household dust and outdoor soil. While it was not possible to compare directly, we were able to use several methods to assess detected concentrations, changes in site-specific PAH allocations, and PAH origination. Additional research is needed to identify specific sources of domestic PAH exposure in these communities and continued work involving community members and policy makers should aim to develop interventions to reduce domestic exposure to and prevent negative health outcomes from PAHs.


Asunto(s)
Tormentas Ciclónicas , Contaminantes Ambientales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Características de la Residencia , Cromatografía de Gases y Espectrometría de Masas , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...